The type of function we will run across here most frequently is a ``permutation'', defined precisely later, which is roughly speaking a rule which mixes up and swaps around the elements of a finite set.
Let and
be sets.
A function is also called a map, mapping, or transformation. We call the domain of
,
the codomain (or range) of
, and the set
A wonderful tool for learning about permutations is the Rubik's cube. Erno Rubik was born during World War II in Budapest, Hungary. Far from being a mathematician, Rubik was a Professor at the Academy of Applied Arts and Design, teaching interior design. In the mid 1970's, he patented a cube-shaped mechanical puzzle that has since captured the imagination of millions of people worldwide, the Rubik's Cube. Those of you who have a Rubik's cube or similar puzzle have met permutations before. The moves are permutations!
Question: Is there such that
(i.e., ii there always a prime between any two consecutive squares)?
The Cartesian product of two sets ,
is the set of pairs of elements taken from these sets:
More generally, we may repeat this process and take the Cartesian product of the set of real numbers with itself times (where
is any integer) to get
(
times). This
-fold Cartesian product is denoted more conveniently by
. An element of the set
is simply a list of
real numbers. Such a list will be called a vector or an
-vector to be specific.
Sometimes it is convenient to ``picture'' a function as the set of its values inside the Cartesian product . The graph of a function
is the subset
If this definition seems ``backwards'' to you, note we are not writing but
.
For example, the map defined by
, for any real number
, is surjective. Another example, let
be the set of all 54 facets of the Rubik's cube. Let
be the map which sends a facet to the facet which is diametrically opposite (for instance, the upward center facet would be mapped to the downward center facet). This function is also surjective.
In other words, is an injection if the condition
(for some
) always forces
.
Question: Suppose that . Is there an injective function
? Explain.
Equivalently, a bijection from to
is a function
for which each
is the image of exactly one
.
(b) Recall the set of all rational numbers is denoted by . The set
of all rational numbers within the unit interval
is countable since you can define
as follows:
,
,
,
,
,
,
,
, and so on. (There are
terms of the form
, where
is relatively prime to
and
denotes the Euler
-function.).
This function induces three functions
Suppose is a bijection. Define
to be the rule which associates to
the element
,
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |