We conclude this chapter with some considerations of special homomorphisms and isomorphisms. First we define the notion of an endomorphism. A homomorphism
Let be a given group. We denote by
the set of all automorphisms of
. This set is a group with respect to the binary operation of composition of mappings: For clearly
and is the identity element. The associative law is true for mappings with respect to composition and if
then
exists and
since
Now we consider special kinds of automorphisms of a group . Let
, and consider the mapping
defined by
. We contend that
. We leave it as an exercise to show
is 1-1 and onto. We note
, and so
is an automorphism of
. It is called the inner automorphism determined by
.
For future reference, we note here the following result.
Proof: Since the inner automorphism is a homomorphism, we can apply Theorem 7.1.4 to imply that the image of H under ķa, i.e.,
, is a subgroup of
. In words, Proposition 7.2.1 says that the conjugate of a subgroup is a subgroup.
All elements of (if there are any) which are not inner automorphisms are called outer automorphisms. Let us denote the set of all inner automorphisms of
by
. We claim that
. To show this, we consider the mapping
of
into
given by
, i.e.,
Finally, let us consider the kernel, , of the homomorphism given in (7.1). Let
. Now
consists of those and only those elements
such that
, i.e.,
, for all
. In other words,