chapter 
page 
line 
read 
should be 
1 
3 
5 
im 
in 

3 
7 
_\wedge (i.e., _∧ ) 
_\vee (i.e., _∨ ) 

5 
8 
De Morgans's Law 
distribution law 

5 
11 
laws of negation 
De Morgan's laws 

7 
1 
[Gar1] 
(SEE REMARK 1) 

11 
12 
two 
four 
2 
13 
2 
And 
Can 

13 
3 
And 
Can 

16 
12 
or 
of 

19 
2 
vertices 
vertices, edges 

19 
1 
f_1 
f_0, f_1 

23 
6 
left matrix 
(SEE REMARK 2) 

23 
3 
diagonal 
triangular 

23 
7 
of 
or 

27 
6 
S 
a set 

33 
7 
5 jars 
3 jars 

33 
17 
nm 
nm+1 

34 
13 
n 's 
n1 's 
3 
46 
16 
1 3 2 1 
4 3 2 1 

56 
5 
(b_1, n) 
(b_{n1}, n) 

56 
5 
(b_2, n) 
(b_{n2}, n) 

56 
5 
(b_3, n) 
(b_{n3}, n) 

56 
5 
(b_{n1}, n) 
(b_1, n) 

57 
6 
adjacent. bells 
adjacent bells. 

59 
16 
the next 
a later 
4 
63 

*

U

*

*

L

*

R

*

*

D

*

*

*

*

*

*



*

u

*

*

l

*

r

*

*

d

*

*

*

*

*

*



63 
9 
five 
four 

64 
11 
five 
four 

66 
7 
matrix 
array 

66 
5 
f_1r_1 
f_1 

70 
2 
2x2 
2x2x2 

80 
2 
[B1] 
[Bur] 

81 
10 
[f_1.f_5.f_6] 
[f_2.f_1.f_6] 

86 
1 
denote 
and $\ell_4$ denote 
5 
89 
1 
that there 
there 

96 
13 
S_{54} 
S_{48} 

99 
5 
S_4 
S_{48} 

104 
2 
S_{54} 
S_{48} 

110 
6 
Feynmann 
Feynman 

116 
3 
for all x beloinging to X 
(SIMPLY REMOVE) 

117 
6 
H 
H 

118 
17 
lemma 
proposition 
6 
124 
15 
(sometimes called the toggle vector) 
(SIMPLY REMOVE) 

129 
11 
E_{22} 
E_{2,2} 

130 
5 
M_{N} 
M_{N\times N} 

132 
2 
\vec{v_i} 
\vec{f_i} 

134 
19 
if 
of 

135 
12 
theory 
theorem 

138 
14 
1,12 
12 

138 
13 
2,9 
9 

138 
12 
3,10 
10 

138 
11 
4,11 
11 

138 
10 
5,7 
7 

138 
9 
6,8 
8 

138 
8 

5 

138 
7 

6 

138 
6 

2 

138 
5 

3 

138 
4 

4 

138 
3 

1 
7 
148 
9 
digraph 
graph 

148 
14 
3x3 
3x3x3 

148 
2 
I was 
I was born 
8 
158 
17 

remove "," after cos(\theta) 

159 
3 
lemma 
theorem 

163 
2 
number 
number perfect 
9 
169 
2 
sgn 
sign 

174 
20 
f 
\phi 

178 
14 
g_1\cdot g_2^(1)=e_2 
g_1\cdot g_2^{1}=e_1 

182 
1 
f(G_1) 
f(G_2) 

187 
5 
C 
V 

191 
9 
a+b+c\equiv 0 
a+b+c 

195 
13 

missing commas after x_1 and after y_1 

197 
12 
diag(v) 
(SEE REMARK 3) 

197 
13 

(3,3) entry of the 2nd matrix should be 1 instead of 1 
10 
201 
11 
transpositions 
the generators 

217 
2 
n+1 
n 

217 
10, 18 
h_j 
h_i 
11 
222 
1 
v(g) 
vec{v}(g) 

223 
14,15 
H 
H' 

226 
3 
(r,s,0,0) 
(r,0,s,0) 

228 
16 
v_k 
v_{k+1} 

229 
1,2 
\equiv 
\cong 

231 
1 
10^6 
10^7 

241 
8 
plane 
line 
12 
242 
9 

(SEE REMARK 4) 

242 
15 

(SEE REMARK 4) 

244 
14 
plane 
line 

245 
9 
F_5^X 
(SEE REMARK 5) 

245 
10,12 
F_F 
F_5 

246 
3 
elementary transvections 
(SEE REMARK 6) 

249 
15,17,19 
P^1(F) 
P^1(F_7) 
13 
252 
15 
f_V 
f_V:G\to S_v, g \mapsto g_V
(SEE REMARK 7) 

253 
4 
f_{EV} 
f_{VE} 

255 
15 to 13 
vague statement of Claim 1 
a more precise meaningful statement 

257 
20 
S_V x C_3^8 
C_3^8 x S_V 

257 
16 
p(g)\vec{v}(h) 
p(g)^{1}\vec{v}(h) 

260 
10 
Corner 
Edge 

261 
5 
r \in S_V, 
(simply remove) 

263 
1 
5.10 
4.4 (but no edgelabels are given) 
14 
270 
7 
the pile is 
the stack of cards is 

273 
14 
M_12 
M_12 

274 
8 
F; 
F: 

278 
8 
A_24 
A_{24} 

279 
9, 10 
weights of the 
weight distribution of the 

279 
9 
[n, k, d] 
where n is the length, k is the dimension, and d is the minimum distance
(SEE REMARK 8) 

280 
11 
12.3 
12.4 

283 
2 
mthods 
methods 

283 
12 
left 
right

15 
285 
4 
Abyss 
the Abyss 

286 
17 
face 
corners 

288 
5, 4 
G_{k+1}/G_k 
G_k/G_{k+1} 

288 
3 
m_{n1} 
r_{n1} 

288 
2 
n_1 
r_1 

289 
1 
g_{k+1,j}G_k 
g_{k+1,j}G_{k+1} 

289 
2 
n_1 
r_k 

292 
16 
(1,2) 
(2,1) 

292 
18 
(4,2) 
(2,4) 

294 
16 
[FRU \cdot FLU]^3 
(FRU \cdot FLU)^3 

294 
12 
[FRU \cdot BLU]^5 
(FRU \cdot BLU)^5 

295 
12 
bottom 
bottom and left center facets 

295 
2 
UL 
$UL$ 

298 
5 
9.4 
10.4 
Bibliography 
299 
missing reference 

[Bur] R. Burn, Groups: a path to geometry, Cambridge Univ. Press, 1985. 

299 
missing reference 

[Gar3] M. Gardner, Eight problems, in New Mathematical Diversions, M.A.A, 1995. 

301 
18 
group 
groups 





REMARK 1: 
The problem is described in [Gar3], "New Mathematical Diversions", instead of [Gar1]. 

REMARK 2: 
3x4 matrix would also be appropriate for the example. 


REMARK 3: 
The function diag is not defined. (It defines a diagonal matrix with the given entries on the diagonal.) 

REMARK 4: 
The matrices on right hand side of the equation should be swapped. 


REMARK 5: 
F_5^X is not defined. 


REMARK 6: 
The term is not explained in this book. See transvection on Wikipedia, for example. 


REMARK 7: 
f_V is defined to be the map F_V(g)=g_V. 


REMARK 8: 
the notation is not defined. 







